ডাটা নিয়ে কথা -মাসনুন আহমেদ
  • শূন্য থেকে শুরু
    • কেন লিখছি, কাদের জন্য লিখছি, কিভাবে শিখতে হয়
    • গিটবুকটি কিভাবে পড়বেন ?
  • julius.ai কি ?
    • julius.ai ফিচারগুলো
      • প্রম্প্ট বেসড ডাটা এনালাইসিস
      • প্রোগ্রামিং খটমট নেই
      • গ্রাফ এবং ডাটা ভিজুয়ালাইজেশন
      • ডাটার মিনিংফুল ইনসাইট
      • ডাটা স্ট্রাকচারিং এবং হেভিওয়েট ডাটা
  • হাতেকলমে জুলিয়াসের প্রয়োগ
    • ডাটা এনালিটিক্স এর ৭টি স্টেপ : যেভাবে Ai এর সাহেয্যে আমি ডাটা এনালাইসিস করি
    • একটি অফিসের গল্প
    • রিলেশনশিপ স্ট্যাটাস
    • কাস্টমারদের ডাটাসেট
    • User Engagement এবং Churn Prediction
  • জুলিয়াস দিয়ে স্ট্যাস্টিকাল টেস্ট
    • ANOVA Test
    • Chi Square Test
  • AI এর উপরে কিছু গবেষণা
    • Biased Vs Unbias AI
    • AI এর উপর স্ট্যানফোর্ডের গবেষণা
    • আর্টিফিসিয়াল জেনারেল ইন্টেল পর্ব ১ [লেখা চলমান থাকবে]
    • দা ইমিটিশন গেম
    • বায়োইনফরমেটিক্স এ AI এর ব্যাবহার
  • ক্যাগলের নোটবুক
    • ক্যাগলের নোটবুক এবং আমার পাইথনে ডাটা ভিজুয়াল
    • Exploring Top US Data Science and Analytics Master's Program - 01
    • শার্ক ট্যাঙ্ক বাংলাদেশ ২০২৪
    • লিংকডইনের USA এর AI /ML জব এর ডাটাসেট :: ক্যাগলে আমার তৃতীয় নোটবুক
    • ১৫০ থেকে ১৭০০ :: ডেঙ্গুর ডাটাসেট
    • ক্যাগলের এপার্টমেন্টের ডাটাসেট
    • বাংলাদেশের ৪ জেলার ট্রাভেলার ডাটাসেট এনালাইসিস : পর্ব ১
    • বাংলাদেশের ৪ জেলার ট্রাভেলার ডাটাসেটের গল্প : পর্ব ২
    • বাংলাদেশের ৪ জেলার ট্রাভেলার ডাটাসেটের গল্প : পর্ব ৩ (শেষ পর্ব )
    • NLP ক্লাসিফিকেশন ডাটাসেট :মেশিন মেশিন কি পারবে রোগ অনুযায়ী ডক্টর সাজেস্ট করতে ?
    • সোশ্যাল মিডিয়ায় কেনাকাটার উপর ডাটা এনালিটিক্স (পর্ব ১ )
    • সোশ্যাল মিডিয়ায় কেনাকাটার উপর ডাটা এনালিটিক্স (পর্ব ২ )
    • সোশ্যাল মিডিয়ায় কেনাকাটার উপর ডাটা এনালিটিক্স (পর্ব ৩ )
    • সোশ্যাল মিডিয়ায় কেনাকাটার উপর ডাটা এনালিটিক্স ( শেষ পর্ব )
    • সোশ্যাল মিডিয়ায় কেনাকাটার উপর ডাটা এনালিটিক্স (পর্ব ৪ )
    • হিট ভালনারবিলিটি ইনডেক্স এর একটি ডাটাসেট : শহর চট্টগ্রাম
  • ক্যাগলের কম্পিটিশনে আমার অংশগ্রহণ
    • আবাহাওয়ার ডাটাসেট নিয়ে প্রেডিকশন -১
    • স্পেসশিপ টাইটানিক ডাটাসেট-২
    • সেন্টিমেন্ট এনালাইসিস ডাটাসেট -৩
    • প্রজেক্ট টাইটানিক - ৪
    • টুইটারের টুইট দিয়ে প্রাকৃতিক দুর্যোগের মেশিন লার্নিং মডেল-৫
    • মেশিন কে হাতেরলেখা চিনানো বিশ্ববিখ্যাত MNIST ডাটাসেটের গল্প - ৬
    • ব্যাঙ্ক এর কাস্টমার ব্যাঙ্ক ছেড়ে যাবে কি না - ৭
    • মোটু কাহিনী : মাল্টিক্লাস প্রেডিক্টর কম্পিটিশন - ৮
    • বন্যার পূর্বাভাস সংক্রান্ত কম্পিটিশন : ফ্লাড প্রেডিকশন ডাটাসেট - ৯
    • সোশ্যাল মিডিয়া ইনফ্লুয়েন্সার ডাটাসেট -১০
    • Binary Prediction of Poisonous Mushrooms ডাটাসেট-১১
    • ক্যাগলের কম্পিটিশন : মেশিন কি পারবে আপনি বিষন্ন কিনা সেটি বলতে ?
    • Gliese 12 b
    • যারা গিটবুকটি সাইটেশন করতে চান
  • AI এর যুগে আমরা : কি শিখবো, কিভাবে শিখবো
  • Data Democratization : একজন নন টেক হয়েও আমার প্রতিষ্ঠান TradePoint কে যেভাবে Data Driven বিজনেস kore
  • মৃত্যুকূপ : Geospatial ডাটাসেটে আমার প্রথম Ai দিয়ে কাজ
  • AI, ক্লাউড আর ডাটা সায়েন্স: ২০২৫ সালের ৭টি ট্রেন্ড যা অনেক কিছুই বদলে দিবে
  • জুলিয়াস থেকে পাওয়া উপহার
  • কিছু রিডিং ম্যাটেরিয়াল
  • ভবিষৎতের পৃথিবী :: কোডিং নিয়ে কিছু কথা (পর্ব ১)
  • ভবিষৎতের পৃথিবী : শ্রমিক,ব্যাঙ্কার অথবা একজন ডাটা এনালিস্ট :: কে Ai এর প্রভাবমুক্ত?: (পর্ব ২)
  • প্রশ্নোত্তরে ডাটা নিয়ে কথা
  • 💡টেক ডায়েরি 💡
    • বুক রিভিউ ১ :: প্রোগ্রামিং ফর বিগিনার
    • app রিভিউ পর্ব ১
    • Open AI এবং Iliya
    • ভবিষ্যতের কম্পিউটিং কেমন হবে ?
    • কৃত্রিম বুদ্ধিমত্তার শাসন কি সমাগত?
    • ডাটা এনালিটিক্স এর ভবিষ্যৎ
    • চায়না জেনেরেটিভ AI এর পেটেন্টে এগিয়ে
    • OpenAI o1 সম্পর্কে
    • Pixtral 12B মডেল
Powered by GitBook
On this page
  1. ক্যাগলের কম্পিটিশনে আমার অংশগ্রহণ

প্রজেক্ট টাইটানিক - ৪

Previousসেন্টিমেন্ট এনালাইসিস ডাটাসেট -৩Nextটুইটারের টুইট দিয়ে প্রাকৃতিক দুর্যোগের মেশিন লার্নিং মডেল-৫

Last updated 1 year ago

১৬৫৭২টি সাবমিশনের মধ্যে আমার অবস্থান ৪২২৫ এবং মডেল একুরেসি ৭৭%

আমি যেই ডাটাসেটটি বইয়ে পরে মেশিন লার্নিং ব্যাপার প্রথম আগ্রহী হয়ে উঠি সেটি হচ্ছে এই টাইটানিকের ডাটাসেট। খুব সহজ ভাবে বলতে গেলে টাইটানিকের ৮৯১ জন যাত্রীর প্রোফাইলিং এর উপরে প্রেডিক্ট করতে হবে ৮৯২ - ১৩০৯ তম যাত্রীদের মাঝে কারা সারভাইভ করতে পারবে। মানে কারা কারা বাঁচতে বাড়বে।

আমি খুব আশাবাদী ছিলাম প্রজেক্ট টাইটানিকের মডেল একুরেসি ১০০% এর মতো থাকবে। হয় নাই। কিন্তু সেটাতে আমার দুঃখ নেই।

সত্যি কথা বলতে ২ বছর আগে যেই দুঃখ নিয়ে R কে pc থেকে রিমুভ করেছিলাম, সেই দুঃখ কিছুটা হলেও মিটে গেছে। জুলিয়াস কে ইউজ করে ১৬৫৭২টি সাবমিশনের মধ্যে অবস্থান ৪২২৫ করতে পারি, মডেলের accuracy-ও বাড়াতে পারবো, এতটুকু কনফিডেন্স এখন আমার আছে। বুঝে গিয়েছি, মডেলের পিছনে আরো একটু সময় আরো যত্ন করে দিতে হবে; accuracy না বেড়ে যাবে কোথায় ?

যারা টাইটানিকের সেই গল্পটা জানতে চান যেটি পরে আমি আগ্রহী হয়েছিলাম দেখতে পারেন এখানে

বইপত্র পড়া , ভিডিও দেখা, কোর্স করা - এই সব গুলোর সাথে আরেকটা ব্যাপার যুক্ত করবেন। প্রতিদিন একটা না একটা ডাটাসেট নিয়ে প্র্যাকটিস।(ছোট হোক অথবা বড় ) সেটি AI based সফটওয়্যার দিয়েই হোক অথবা ট্রাডিশনাল মেথড (আমার মতো R অথবা পাইথন ) ইন্সটল করেই হোক। পরিবর্তন বুঝতে পারবেন কিছুদিন পরেই।

কম্পিটিশন এর বিস্তারিত :

https://www.kaggle.com/competitions/titanic/overview
৬.১. টাইটানিকের গল্প | হাতে কলমে মেশিন লার্নিং
ক্যাগলের স্কোরিং এর অবস্থা
Logo